

BCF-003-1015025

Seat No.

B. Sc. (Sem. V) (W.E.F. 2016) Examination

August - 2021

Physics: P - 501

(Mathematical Physics, Classical Mechanics & Quantum Mechanics) (New Course)

Faculty Code: 003

Subject Code: 1015025

Time : $2\frac{1}{2}$ Hours] [Total Marks : 70

- **Instructions**: (1) Symbols and notations have their usual meaning.
 - (2) Total marks of the question is indicated on right side of the question.
 - (3) Attempt any five questions out of the following ten questions.
- 1 (a) Answer the following questions: (1 mark each) 4
 - (1) The value of coefficient a_n is _____ for Fourier series in interval (-l, l).
 - (2) If f(x) is an odd function, then $\int_{-\pi}^{\pi} f(x) dx = ?$
 - (3) Cosine series also known as _____ series.
 - (4) For odd function $f(-x) = \underline{\hspace{1cm}}$
 - (b) Explain advantages of fourier series.
 - (c) Obtain the fourier sine series. 3
 - (d) Obtain fourier series for a half wave rectifier. 5
- 2 (a) Answer the following questions: (1 mark each) 4
 - (1) Write the formula for fourier series.
 - (2) Is the half wave rectifier function even or odd?
 - (3) What will be the fourier coefficient a_0 of a series

$$\frac{h}{2} + \frac{2h}{\pi} \left[\sin x + \frac{\sin 3x}{3} + \frac{\sin 5x}{5} + \dots \right] = ?$$

1

2

		(4) If $f(x)$ be even, then $f(x) \sin nx$ is	
		and $f(x) \cos nx$ is functions.	
	(b)	Obtain fourier coefficient a_0 .	2
	(c)	Explain the properties of Dirac Delta function.	3
	(d)	Write a fourier series for a function with period $2l$ and obtain sine and cosine series in interval $(-l, l)$.	5
3	(a)	Answer the following questions: (1 mark each) (1) On the base of the constraints holonomic and non-holonomic classified.	4
		(2) How many degree of freedom of a simple pendulum?	
		(3) Write the equation of D'Alembert's principle.	
		(4) Write the expression for generalised displacement.	
	(b)	Explain generalized velocity and generalized	2
	(-)	displacement.	ค
	(c)	Obtain Lagrange's equation of motion for a simple pendulum.	3
	(d)	?	5
4	(a)	Answer the following questions: (1 mark each)	4
		(1) The product of $Q_j \delta q_j$ must have the dimension	
		of	
		(2) The constraints conservative and dissipative are classified on the base	
		(3) Rayleigh's dissipation function is define as $f = $	
		(4) Write Euler-Lagrange differential equation.	
	(b)	Explain configuration space.	2
	(c)	Obtain Newton's second law of motion from Hamilton's Principle.	3
	(d)	Obtain Lagrange's equation of motion from	5
	(-)	D'Alembert's principle for conservative system.	
5	(a)	Answer the following questions: (1 mark each)	4
		(1) $\frac{\partial L}{\partial q_j} = 0$ then q_j is referred to as	
		(2) The 2n-dimensional space having n-corrdinates	
		q_i , $i = 1, 2,, n$ and n-coordinates momenta	
		$p_i, i = 1, 2, n$ is known as space.	
		(3) Write modified Hamilton's principle.	

2

[Contd...

BCF-003-1015025]

- (4) A rigid body capable to oscillate in a vertical plane above a fixed horizontal axis is called _____ pendulaum.
- (b) Find the hamiltonian for the Lagrangian.

 $L(X, \mathring{X}) = \frac{\mathring{X}^2}{2} - \frac{\omega^2 X^2}{2} - \alpha X^3 + \beta X \mathring{X}^2$

- (c) Obtain the hamilton's canonical equation of motion. 3
- (d) Obtain the equation of simple pendulum from Lagrange's multiplier method.
- 6 (a) Answer the following questions: (1 mark each) 4
 (1) Lagrange's equations of motion are invarient in form with respect to _____ transformation.
 - (2) Define: Phase space of n coordinates.
 - (3) Write the equation of motion of compound pendulum.
 - (4) In conservative system, the potential energy is only _____ dependent.
 - (b) What is called cyclic coordinate? Explain generalized 2 momentum from it.
 - (c) Obtain the Hamilton's equation of linear harmonic oscillator. The Lagrangian of the oscilator $L = \frac{1}{2}mX^2 \frac{1}{2}kX^2.$
 - (d) Obtain Hamilton's Canonical equations from variational principle.
- 7 (a) Answer the following questions: (1 mark each) 4
 (1) The ejected electrone in compton effect is known as compton ______ electron.
 - (2) $[X, P_x] =$ _____.
 - (3) In one dimensional time dependent Schrodinger equation, $i\hbar \frac{\partial \Psi}{\partial t} = ?$
 - (4) What is called "a" in equation Af(x) = af(x)?
 - (b) Explain compton effect. 2
 - (c) Explain operator for momentum.
 - (d) Derive the Schrodinger equation for free particle in one dimension.

2

3

5

8 Answer the following questions: (1 mark of each) 4 For a one dimensional system $[Z, P_z] = \underline{\hspace{1cm}}$? (2)What name is given to the expression $\frac{\partial p}{\partial t} + \nabla \cdot J = 0?$ What name is assigned to the expression (3) $\Delta \lambda = \frac{2h}{M_0 C} \sin^2 \frac{\phi}{2}$? $\langle X \rangle = ?$ **(4)** Derive the value of $[P_x, X]$. $\mathbf{2}$ (b) Describe the experimental study of photoelectric effect. 3 (d) Explain the particle in a three dimensional box. 5 9 Answer the following questions: (1 mark each) 4 (a) Fill up the blank $L_X = -i\hbar$ (). **(1) (2)** Which way a ket vector symbolized? (3) If A is unit operator then, $\alpha | A > =$ What is the Hamiltonian for a linear harmonic oscillator? Prove that [X, Y] = -[Y, X]. 2 (b) Explain ket and bra vector. 3 (c) (d) Obtain the Hermite's differential equation. 5 10 Answer the following questions: (1 mark each) (a) 4 A _____ Operator is convert : a ket |A|into another ket |B>. (2) A self adjoint operator $\alpha =$ The ground state energy of the harmonic oscillator (4) $[\alpha, \beta] = -[\underline{}, \underline{}]$ (b) If $H = \frac{P^2}{2m} + \frac{1}{2}mw^2x^2$, then prove that $[X, H] = \frac{i\hbar P}{m}$. 2

(c)

(d)

Explain coherent state.

Describe the two body problem.

3

5